
Journal of Computational Physics 181, 639–653 (2002)
doi:10.1006/jcph.2002.7147

An Approach to Local Refinement
of Structured Grids

P. A. Durbin and G. Iaccarino

Department of Mechanical Engineering, Stanford University, Building 500, Stanford, California 94305-3030

Received July 6, 2001; revised May 22, 2002

Structured grids can be refined locally by adding line segments. These are no-
tionally made into complete grid lines by filling the remainder of the line with
blanks. A discretization scheme is adapted to this type of grid by adding interpo-
lation points to complete differencing stencils. The Navier–Stokes equations are
solved by the artificial compressibility approach. Examples show the efficacy of the
method. c© 2002 Elsevier Science (USA)

Key Words: computational fluid dynamics; structured grids; mesh refinement;
artificial compressibility.

1. INTRODUCTION

Structured grid algorithms have advantages in many CFD applications. They can be more
computationally efficient than unstructured methods; mesh connectivity is simpler; a higher
degree of implicitness is facilitated for stiff problems; they can simplify resolution of thin
shear layers.

One drawback to structured gridding is the difficulty of adapting the grid to the solution.
Fluid mechanics is notorious for solution fields containing steep gradients and concentrated,
vortical flow features. Solution adaptive grid refinement is a desirable capability.

The majority of research on solution adaptive gridding has been for unstructured solution
methods [8]. Local adaptation involves inserting nodes within a preexisting mesh; two dif-
ferent refinement strategies are possible: conformal and nonconformal (also called h-type)
refinement. In the former grid connectivity between the new nodes and the surroundings is
rebuilt; even though this technique is well suited only to triangular (or tetrahedral) grids it
has been used extensively in the literature [4]. The nonconformal refinement, on the other
hand, can be applied to any type of mesh: New nodes are generated by subdividing pre-
existing cells. At the interface between refined and nonrefined cells hanging nodes are left
and an interpolation/reconstruction of the solution is required to ensure the accuracy of the
procedure [8].

639

0021-9991/02 $35.00
c© 2002 Elsevier Science (USA)

All rights reserved.

640 DURBIN AND IACCARINO

Our interest in adaptive, structured grids arose from work on RANS equation solvers.
Vagaries of some turbulence models favor solution by implicit line-relaxation methods.
For instance, wall boundary conditions can strongly influence interior nodes. Often turbu-
lence is most intense in thin regions, which require a locally refined grid. Such consider-
ations motivated the present proposal for solution adaptive refinement. The present paper
proposes that a method analogous to h-refinement can be developed for structured grid
algorithms.

Previous methods for solution-adaptive, structured gridding have involved globally regen-
erating the grid. Such techniques are referred to as grid movement (see review in Ref. [7]).
As examples, the authors of [13] move boundary points to alter the distribution of nodes
placed inside the domain by an algebraic grid generator; in [9] and [12] solution gradients
are used to modify the control functions of parabolic and elliptic grid generators; in [6] an
intermediate grid is modified in a parametric domain. In all cases the entire grid is reformed
to capture local gradients.

Another approach is to refine subdomains of a multiblock, structured grid [1]. In this case
discontinuous grids meet at block-to-block boundaries and appropriate coupling operators
must ensure accuracy and conservation.

A large amount of published literature deals with Cartesian adaptive mesh refinement
techniques (this is a special case of h-refinement). The mesh is a collection of regular
elements that can be split into subelements; connectivity between elements is treated by
tree structures, and an unstructured solver is used, even if the mesh appears as a locally
structured grid. In [2] this is done within the context of an Euler solver. The type of grids
generated by [2] can readily be adapted to structured solution algorithms by the present
approach, although that is not its primary motivation.

The locally adaptive method proposed herein was motivated by the idea of iblanking [3]
(the terminology iblank comes from a variable name used in computer codes). Originally,
iblanking was a device to insert geometry into a structured grid by extending the grid inside
the body, then blanking out the interior portion. The region inside the body is decoupled
from the fluid via boundary conditions. In the original approach the interior region is solved,
although the equations there are arbitrary—usually formulated as solving u(x) = constant,
or the like. It is straightforward to revise such algorithms so that the blanked region is
skipped, requiring neither storage of variables nor solution of equations. For present pur-
poses, the notionally blanked portion of the grid could be larger than the active portion. Our
solution algorithm skips the blanked portion.

Conceptually, our method consists of adding grid lines where needed, and blanking out
all but the portion of those lines that lies in the area where higher resolution is required.
Since the blanked portion is skipped, the actual method adds line segments (refer to Fig. 8).
The line segments lie on an underlying, notional, structured grid. The notional grid would be
constructed from active and blanked nodes, as illustrated by Fig. 1. The black circles denote

FIG. 1. Active (�, �) and blanked (�) grid points. Points indicated by � show the initial grid; those indicated
by are added through refinement; ⊗ is an interpolated point. Complete (solid) and incomplete (dotted) finite-
difference stencils are shown.

LOCAL REFINEMENT OF STRUCTURED GRIDS 641

an initial, coarse grid. The gray circles indicate points added through local refinement. They
amount to inserting an extra grid line in the k direction, a portion of which is active; the rest
is blanked—as indicated by the open circles. A discrete solution scheme must be adapted
for this class of grids.

2. FINITE DIFFERENCING

For the purpose of initial development, we consider the incompressible Navier–Stokes
equations. Discretization is by finite differences. Finite volumes could be used, but a finite-
difference formulation makes the method quite apparent. The node labeled H in Fig. 1
(usually called a “hanging node”) is connected to three active nodes. To complete the finite-
difference stencil a solution value is interpolated to the point labeled I. Note that I is only
used to complete the stencil at H; otherwise it is treated as blanked. The interpolation stencil
determines the effective finite-difference scheme and its local accuracy.

For instance, if the value at I is linearly interpolated between its vertical neighbors, then the
six-point stencil in Fig. 2 is implied by the five-point stencil in Fig. 1. A centrally differenced
j derivative is second-order accurate for a symmetric stencil; δ j u = (1/2)(u j+1 − u j−1).
However, with an interpolated value as in Fig. 2,

δ j u j,k = 1

2

(
1

2
(u j+1,k+1 + u j+1,k−1) − u j−1,k

)
, (1)

the accuracy becomes first order because of the asymmetry, irrespective of the fact that
the value u j+1,k = (1/2)(u j+1,k+1 + u j+1,k−1) is a second-order interpolation in the k
direction.

In a 2-D grid of N 2 nodes, the number of hanging nodes will be O(N). Hence the global
error of a second-order method on complete stencils would not be reduced by first-order
accuracy adjacent to interpolation points. However, the local dissipative error due to first-
order convection might be undesirable. Local accuracy can be increased by modifying the
interpolation stencil. The interpolation formula

u j+1,k = 1

2
(u j+1,k+1 + u j+1,k−1) − 1

2
(u j,k+1 + u j,k−1 − 2u j,k) (2)

substituted in place of (1/2)(u j+1,k+1 + u j+1,k−1) in (1) provides second-order accuracy.

FIG. 2. Effective finite-difference stencil.

642 DURBIN AND IACCARINO

Generally, a value for u j+1,k could be obtained by a local reconstruction of the solution.
For instance Eq. (2) can be derived from a second-order polynomial reconstruction. Initially
u j+1,k is treated as given, and then its value is obtained by eliminating the first-order error
from the finite-difference formula. In short, in the region shown by Fig. 2 let

u = a + bx + cx2 + dy + ey2 + f xy.

Then the requirement that this agree with u j,k at the seven points shown in the figure leads
to the formula (2).

For a given interpolation stencil, constraints are placed on the allowable grid refinements.
Let a coarse grid be set. An initial flow solution is obtained on that grid. That solution is
then used to define refinement line segments: For instance, adaptation might be based
on distributing the total variation of a solution variable more evently over the grid [7].
Interpolation points are then set to complete the finite-difference stencil at hanging nodes.
In the case of Fig. 2, values at (j + 1, k) are interpolated; to set them, solution variables
must be available at (j + 1, k + 1) and (j + 1, k − 1).

A definition of “hanging node” is needed. Let �c be the coarsest grid spacing in com-
putational space. Then hanging nodes are those for which at least one neighbor is spaced
farther than �c. If the grid is refined by bisection, then after p levels of refinement the finest
grid spacing �f has become �c/2p—with the caveat that much of the finer grid points are
iblanked, or notional. Identification of the interpolation points is a simple check of whether
|� j | or |�k| are greater than �c; if so, both nodes in that direction are identified as hanging
nodes, and interpolation points are added to complete their difference stencils.

A few of the fine grid points may lead to unsuitable interpolation stencils; this depends
on how the interpolation is performed. With the present method for the linear interpolation
(1) to be applied, the interpolated points must lie between two active nodes in at least one
direction. As a corollary, no cell face may contain more than one hanging node. It suffices to
impose a broad requirement that interpolation points be connected no more than pairwise.

This rule can be imposed by revising the mesh after refinement. First hanging nodes are
identified: Pairs of nodes for which |� j | > �c or |�k| > �c are found. These are locations
where interpolation would be required. Then the mesh is repaired: Cycling through the
identified interpolation points, those connected to more than one other interpolation point
are selectively deleted, and new connections are made. Reconnection is quite a simple
matter on the structured grid.

FIG. 3. Upper right corner of a refined grid, showing interpolation points. �, coarse grid; �, medium grid;
, finest grid. ⊗ are interpolated points. The dotted lines show connections to distant interpolation points.

LOCAL REFINEMENT OF STRUCTURED GRIDS 643

FIG. 4. Five-point stencils for the active points A, B, C (�, coarse grid; , fine grid); note that the interpolation
point I is used for the stencil at B but not at C.

Figure 3 illustrates the process. This figure shows the upper right portion of the fine region
of a twice-refined grid. (The grid is meant to continue beyond the borders of the figure.)
An unacceptable initial distribution of interpolation points, ⊗, is left by the two levels of
refinement, � and �. Points labeled A and B are each connected to two ⊗’s; this violates
the rule stated previously. Note that connections to distant points must be accounted for,
even if they lie on the boundary of the computational domain. While it might seem that
A is allright, because it lies between two active points, that is immaterial, since point A
does not enter the difference stencil of any active point and so would not be used; such
considerations lie behind the broadly stated rule here.

If point B is deleted, then A becomes acceptable and point b becomes identified as an
interpolation point. Points A and b then lie between two active nodes. Note, however, that
at b formula (2) contains an interpolated value. That affects the second-order accuracy;
however, such awkward points arise only in isolated locations—here at a corner in the fine
grid. When they arise they are accepted.

Once the interpolation points are properly labeled, discretization stencils are constructed
for the active points. Figure 4 represents active points on a locally refined grid. The stencil
at point A uses active points only, with a nonuniform spacing in the k direction, whereas
point B uses the interpolated value I. Note that the k-line, where I and B are located, is
skipped by the stencil of point C; hence the stencil at that point is regularly spaced on the
coarse grid.

A complete example is shown in Fig. 5. This is a grid for flow over a backstep. The
coarse grid was refined uniformly in two blocks. The upper right corners of each block
contained unacceptable interpolation points. By counting connections, these points were
located and fixed. The encircled regions contain dislocations where deletions were needed
to form acceptable interpolation stencils.

FIG. 5. Block refinement for flow over a backstep. Two levels of refinement are shown. The y axis has been
magnified by a factor of 2. Faint lines are the coarse grid. Circles indicate where the interpolation points were
revised.

644 DURBIN AND IACCARINO

3. NAVIER–STOKES SOLUTION

The steady, incompressible Navier–Stokes equations were solved by the artificial com-
pressibility method, following the approach in [10]. The primary modification was to re-
formulate the algorithm in finite differences; for present purposes it was also coded for
Cartesian grids. The governing equations are

∂τ p + β∂ j u j = 0,
(3)

∂τ ui + ∂ j (u j ui + pδi j) = ν∇2ui ,

where τ is an artificial time step that is used for relaxation. The compressibility parameter
β drops out in steady state; it couples the velocity to the pressure during iterations. β also
contributes to the numerical dissipation. Its value should be proportional to the square of
a reference velocity. In the present computations, the reference velocity was unity and the
value of β was 2.

As in [10], Eqs. (3) are differenced; they are then solved by iterating on the linearized
finite-difference equations. In � form the convective terms become

[�q + δτδx�A + �τδy�B] = −δτR, (4)

where q = (p, u, v) in two dimensions. Here �A = ∂qA · �q and �B = ∂qB · �q, in
which ∂qA and ∂qB are Jacobi matrices of the x- and y-direction fluxes, which will be
described in the following. The residual, R, is the discretized steady equation. �q is the
increment of the solution variable in the pseudo-time step δτ and δx is the finite-difference
operator. Convergence requires ‖�q‖ → 0 as τ → ∞.

The discrete derivatives δx and δy are defined by first-order upwinding on the left-hand
side of (4); third-order upwind biasing is applied on the right. The viscous diffusion term
uses second-order central differencing. The only difference with [10] is that Eqs. (4) are
discretized as they stand, without being multiplied by the cell volume. This means that
the cell face areas do not enter the Jacobian, which is a transparent way to avoid the
discontinuous cell area change at hanging nodes (Fig. 1). For the present, incompressible
flow application, this differencing scheme is as accurate as flux-based discretization.

From the ∂x derivative on the left side of (3), A and its Jacobian,

A =

βu

uu + p
uv

; ∂A

∂q
=

0 β 0

1 2u 0
0 v u

, (5)

are easily obtained; similar expressions for B and ∂qB can be written. Following a well-
known procedure [11], the Jacobian can be split into parts with positive and negative
eigenvalues,

∂qA+ = 1

2c

β β(u + c) 0

(u + c) (u + c)2 0

v(1 − |u|/c) v(c + 2u − |u|u/c) c(u + |u|)

,

(6)

∂qA− = ∂qA − ∂qA+,

where c2 = u2 + β.

LOCAL REFINEMENT OF STRUCTURED GRIDS 645

The split into positive and negative matrices provides numerical dissipation. There is a
degree of freedom in how this is done; we have invoked the following. First note that a
derivative biased toward j − 1 can be written

δx A = (A j − A j−1)

�x

= (A j+1 − A j−1)

2�x
+

[
(A j − A j−1) − (A j+1 − A j)

2�x

]
(7a)

and a derivative biased toward j + 1 is

δx A = (A j+1 − A j)

�x

= (A j+1 − A j−1)

2�x
−

[
(A j − A j−1) − (A j+1 − A j)

2�x

]
. (7b)

Expression (7b) is linearized using the positive part of A for the square-bracketed term:

2�xδx A = ∂qA j (q j+1 − q j−1) + ∂qA+
j−1/2(q j − q j−1) − ∂qA+

j+1/2(q j+1 − q j). (8)

Correspondingly, expression (7b) is linearized using the negative part of ∂qA. Then, on the
left side of Eq. (4), δx�A is differenced by adding the positive and negative splits to the
central term, as

2�xδx�A = ∂qA j (�q j+1 − �q j−1) + ∂qA+
j−1/2(�q j − �q j−1)

−∂qA+
j+1/2(�q j+1 − �q j) − ∂qA−

j−1/2(�q j − �q j−1)

+∂qA−
j+1/2(�q j+1 − �q j). (9)

Reference [10] uses the telescoping form ∂qA j+1�q j+1 − ∂qA j−1�q j−1 for the first term.
The last four terms are just the usual form of matrix dissipation [11], often written as

∣∣∂qA j−1/2

∣∣(�q j − �q j−1) − ∣∣∂qA j+1/2

∣∣(�q j+1 − �q j).

At convergence �q = 0, at which point this dissipation vanishes; the intent of the upwind
discretization is simply to accelerate convergence. The converged accuracy is controlled by
the differencing of the right side of (4), discussed in the following.

The system of equations (4) is iterated to steady state with symmetric Gauss–Seidel
line relaxation, updating q to q + �q after each complete relaxation step. In the present
calculations a step consisted of one forward and one backward sweep in each of the j
and k directions. Velocity and pressure at points denoted by ⊗ are evaluated explicitly by
interpolation on the previous iteration.

It is peculiar to the present application that the line lengths are variable, due to the
refinement procedure of Fig. 1. Disjoint line segments are packed into a single vector: Thus,
if the middle row of Fig. 1 has active points further to the right, they are filled consecutively
into the vector {q1, q2 . . .}, skipping blank and interpolated points. The disjoint line segments
are numerically independent. The block matrices ∂qA for the line segments are compressed
into block tridiagonal matrices corresponding to the packed solution vector.

646 DURBIN AND IACCARINO

A notable aspect of this procedure is that generic linear algebra routines can be used
to solve the discrete equations. The only caveat is that each j and each k line can have
a different vector length. Storage is indexed on a single variable, which runs through the
active points. For instance, let m j,k be a memory location; v(m j,k) stores a velocity if j, k is
an active point; if j, k is not active, no memory is allocated. With this form of storage, m j,k

is defined on the underlying full grid and the increment between neighboring active points
is not � j = �k = 1. Hence, one needs a large array, m j,k , at the finest grid resolution.
Then the dependent fields are efficiently stored in smaller arrays, only at nodes that m j,k

points to as being active. These are simply matters of bookkeeping, which have no bearing
on the fully structured gridding. Memory access becomes consecutive once a line of data
is packed into a sequential array; hence, the method can be made cache efficient.

The right side of (4) contains the flux term δx A and δyB. A third-order, upwind biased
derivative for the former is given by

δx A = 1

6�x
(A j−2 − 6A j−1 + 3A j + 2A j+1).

This contributes a flux gradient

1

2�x
(A j+1 − A j−1) + 1

6�x
[2(A+

j − A+
j−1) − (A+

j+1 − A+
j) − (A+

j−1 − A+
j−2)] (10)

from the positive eigenvalues. The last expression consists of a central difference plus a
dissipative term for flux with positive eigenvalues; a similar term is added for the negative
eigenvalues to give

δx A = 1

2�x
(A j+1 − A j−1) + 1

6�x
[2(A+

j − A+
j−1) − (A+

j+1 − A+
j) − (A+

j−1 − A+
j−2)]

+ 1

6�x
[2(A−

j+1 − A−
j) − (A−

j+2 − A−
j+1) − (A−

j − A−
j−1)]. (11)

Split flux differences like A+
j+1 − A+

j are evaluated from the Jacobian (6) as

∂qA+
j+1/2 · (q j+1 − q j).

The centered difference is evaluated without linearization. Then (11) consists of a central
difference plus a fourth-order diffusive contribution. This is the procedure used in [10] to
introduce higher order numerical dissipation in the residual. It can occur that j ± 2 is a
blanked or boundary point; then the stencil for the dissipative term is shifted forward or
backward in the j direction.

The first term on the right side of Eq. (11) is a second-order central difference on a
uniform grid. At a 2 : 1 grid refinement, say where x j+1 − x j = 2(x j − x j−1), its accuracy
becomes first order. At such locations, a second-order centered difference is evaluated as

1

4�x j
(A j+1 + 3A j − 4A j−1), (12)

where �x j = x j+1/2 − x j−1/2. The dissipative term of (11) is not modified for the nonuni-
form spacing. Hence the local grid refinement can be incorporated into this artificial com-
pressibility scheme with only minor revision.

LOCAL REFINEMENT OF STRUCTURED GRIDS 647

The viscous diffusion term on the right side of (3) was central differenced and was
included in the implicit matrix and residual, on the left and right sides of (4). The split
between implicit and explicit contributions is via the Euler implicit treatment: The diffusion
term is evaluated at the n + 1 iteration, with qn+1 = qn + �q.

Where the grid spacing doubles, a three-point second difference would become

δ2u ∝ u j+1 + 2u j−1 − 3u j ,

if x j+1 − x j = 2(x j − x j−1). This has first-order accuracy, with a leading order dispersive
error. A second-order four-point scheme simply skips the value at x j−1,

δ2u ∝ u j+1 + u j−2 − 2u j ,

assuming x j − x j−1 = x j−1 − x j−2. However, in the present computations the three-point
stencil was retained, even at 2-1 refinements. Doing so gives the viscous term a first-order
formal accuracy at jumps in grid spacing.

4. EXAMPLES

A flow computation was performed on the grid of Fig. 5. The full domain extends over
−4 < x < 35, 0 < y < 6 with a symmetry condition at y = 6. Streamlines, velocity vectors,
and convergence history are displayed in Fig. 6. This particular grid is simply block-refined;
it was not adapted locally to the solution. It serves primarily to illustrate the effectiveness
of the solution algorithm and to show that the solution continues smoothly across the
interpolation points. Also, no numerical instabilities were encountered.

Second-order formulas for convection (12) and interpolation (2) were used in this com-
putation. The convergence history of Fig. 6 is for a pseudo-time step of �τ = 2.5 based on
free-stream speed and step height of unity. With �τ = 10.5 the same level of convergence
(i.e., to single precision) was obtained in only 300 iterations.

The next example assesses the order of accuracy. Flow in a square cavity with a moving
upper wall [5] was chosen for this purpose. The Reynolds number based on cavity height H
and wall velocity was 1000. A stress singularity occurs where the stationary and moving

FIG. 6. Streamlines and velocity vectors for a backstep at step height Reynolds number of 200 on the grid
of Fig. 5. Only part of the domain is shown. Residual plot shows the maximum absolute residual (solid) and
maximum divergence (dashed).

648 DURBIN AND IACCARINO

walls meet in the geometry of Ref. [5]. Therefore, for testing convergence, we modified this
geometry by leaving a gap of H/2 between the moving and stationary walls, with inflow
boundary conditions on the left side and outflow on the right (Fig. 7).

Results for uniform grids are reported in Fig. 7a. Errors are measured relative to a solution
on a 320 × 320 grid. The global norms, L1 and L2, show nearly second-order accuracy (the
slopes were obtained by fitting an exponential though the data points). Lower accuracy
is achieved locally (L∞). However, the maximum error selected by the L∞ norm occurs
near the exit plane, where the outflow and solid wall meet; it is not associated with local
refinement. The exit condition consists of zero gradient for velocities and constant pressure.
It was imposed by first-order extrapolation; clearly, the global error was not hurt.

The accuracy of the present code on a nonuniform mesh is evaluated in Fig. 7b. Vertical
lines were added in the central region of the cavity, but no hanging nodes are present. The
scheme remains approximately second order. Slightly larger overall errors were observed
if the standard scheme is used without the correction (2), but the accuracy was still second
order. This is consistent with the idea that a first-order stencil at jumps in grid spacing does
not degrade the global accuracy.

FIG. 7. (a) Uniform mesh. (b) Nonuniform mesh: Vertical grid lines are added in the region 0.3 < x < 0.7 (no
hanging nodes). (c) Streamlines and error norms for the flow in a cavity at Re = 1000. Locally refined mesh: Vertical
grid lines and horizontal grid segments are added in the region 0.3 < x < 0.7 (hanging nodes are interpolated using
Eq. (2)).

LOCAL REFINEMENT OF STRUCTURED GRIDS 649

FIG. 7—Continued

650 DURBIN AND IACCARINO

Finally, in Fig. 7c locally refined grids are tested for order of accuracy. Both vertical grid
lines and horizontal grid segments were added in the central region of the cavity. In this
case hanging nodes are present and the second-order interpolation formula (2) is used. The
second-order accuracy of the method was not changed.

It must be noted that in Figs. 7a,b,c the errors are evaluated as a function of an equivalent
grid spacing � = 1/

√
N , where N is the total number of active points. For uniform meshes

� = �x = �y = 1/
√

N , but this is a looser definition of spacing in the context of nonuni-
form grids. The curves in Figs. 7b and 7c would shift to the left or right were grid spacing
defined differently, thus preventing a quantitative comparison among the error levels in
Figs. 7a–7c. Nevertheless, the slopes would be unchanged, providing a measure of nominal
order of accuracy.

As an example of the application of the present technique, an adaptive grid refinement for
the original cavity proposed by [5] is reported in Fig. 8. The adaptation function was based on
a linear combination of velocity magnitude (V) and pressure (p): The grid is refined where
φ = (1/2)(10V/Vin + 100p/pmax) is less than one, where Vin is the slip velocity imposed
at the top of the driven cavity and pmax is the maximum pressure. The initial (uniform)
grid is made up of 20 × 20 cells and three successive refinement steps were employed.
The final mesh is shown at the left in Fig. 8. Active nodes are clustered in the eddies and
near the walls. The pressure dependence of the adaptation function, φ, was designed for
the former; the velocity dependence is to capture the latter. The refinement is distinctly
nonisotropic.

The streamlines on the right panel of Fig. 8 show the presence of secondary recircula-
tion regions in the lower corners, in good qualitative agreement with benchmark results
[5]. A more quantitative comparison is reported in Fig. 9: Velocity profiles on vertical and
horizontal centerlines are reported there for the adapted grid and are compared to a so-
lution on a uniform 100 × 100 grid. The agreement between these two solutions is quite
good. Note that the locally refined solution cuts through the highly irregular grid at the
center of the cavity. The grid in Fig. 8 contains 4683 active points; the finest level cor-
responds to an 80 × 80 full grid. In Fig. 8 a solution obtained on a uniform 68 × 68 grid

FIG. 8. Computational grid and streamlines for the flow in a square cavity at Re = 1000 using adaptive locally
refined grids. Hanging nodes are interpolated using Eq. (2).

LOCAL REFINEMENT OF STRUCTURED GRIDS 651

FIG. 9. Velocity components in vertical and horizontal centerline; flow in a square cavity at Re = 1000.

(corresponding to ≈4600 nodes) is reported; this shows the advantage of using locally
refined grids.

5. DISCUSSION

It has been shown how local adaptive refinement can be effected on a fully structured grid.
A complete grid is imagined to underlie the computation, but flow variables are defined only
at active points. Conversely, inactive points are iblanked. However, the iblanking is largely
notional: Variables are not stored, nor are equations solved, at blanked locations, so no
computational or memory penalties are incurred. Standard finite-difference schemes apply,
as do standard linear algebra solution algorithms. Relatively small modifications need be
made to allow for the existence of inactive nodes.

Proof of concept computations were provided for a driven cavity and a backstep. The
latter was carried out on a block refined grid; the former invoked local adaptive refinement.
The adaptive refinement occurred near boundaries and in the eddies. Comparison to previous
studies, and to a uniform fine-grid solution, showed that the present method is effective.
Second-order global accuracy was obtained in grid convergence tests. In this paper the
method was applied on Cartesian grids; however, it is obviously extensible to curvilinear
grids.

Laminar flows were computed to assess the method. Laminar flow provides a clearly
defined test. However, one motive for structured grid methods is to facilitate implicit treat-
ment of turbulence models. To complete the story, the application to Reynolds-averaged
computation will be illustrated.

The present algorithm was tested on the grid of Fig. 10. The underlying fine grid was
concentrated near the walls, with exponential stretching away from the surface. This is
required to capture the viscous wall region. The underlying 101 × 101 grid was iblanked to
a 4087-point grid; i.e., more than half of the points were deleted.

The lower portion of Fig. 10 is from a RANS v2– f model computation. It shows skin
friction on the lower wall, downstream of the step. Computations on the locally refined grid
are compared to a solution on the full grid. In the region 0 < x < 10 the two grids have the
same spacing; in 10 < x < 17 the locally refined grid is twice as coarse; and in 17 < x < 35

652 DURBIN AND IACCARINO

FIG. 10. Block refined, nonuniform grid for RANS. Step height Reynolds number is 5000. Finest grid lies in
−4 < x < 10, 0 < y < 1.5; medium grid lies in −4 < x < 17, 0 < y < 2. The y axis has been magnified by a factor
of 2. There is skin friction on the lower wall, beyond the step.

the second grid is four times as coarse: Indeed, combined with the exponential stretching it
has become extremely coarse. The skin friction is in excellent agreement with the fine-grid
computation (and with data, included for curiosity) until this last region. Other solution
fields show similarly good correspondence between locally refined and fully refined cases.
The present method clearly is applicable to RANS computation.

ACKNOWLEDGMENTS

This work was supported by the NASA/Stanford Center for Turbulence Research and by the Office of Naval
Research.

REFERENCES

1. M. Amato, G. Iaccarino, and L. Paparone, Application of an Automatic Local Grid Refinement Technique to
High-Lift Flows, ICAS Conf., Sorrento, Italy, 1996.

2. M. J. Aftosmis, M. J. Berger, and J. E. Melton, Adaptive Cartesian mesh generation, in CRC Handbook of
Mesh Generation (CRC Press, Boca Raton, FL, 1998), pp. 22-1–22-35.

3. J. A. Benek, P. G. Buning, and J. L. Steger, A 3-D Chimera Grid Embedding Technique, Technical Paper
85–1523 (AIAA Press, Washington, DC, 1985).

4. H. L. De Cougn and M. S. Shepard, Parallel refinement and coarsening of tetrahedral meshes, Int. J. Numer.
Methods Eng. 46, 1101 (1999).

LOCAL REFINEMENT OF STRUCTURED GRIDS 653

5. U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the Navier–Stokes
equations and a multigrid method, J. Comput. Phys. 48, 387 (1985).

6. R. Hagmeiger, Grid adaptation based on modified anisotropic diffusion equations formulated in the parametric
domain, J. Comput. Phys. 115, 169 (1994).

7. R. Hagmeiger and J. Kok, Adaptive generation of structured grids, in von Karman Inst. for Fluid Dynamics,
Lecture Series 1996–06 (AGARD Publication, 1996).

8. D. J. Mavripilis, Unstructured mesh generation and adaptivity, in von Karman Inst. for Fluid Dynamics,
Lecture Series 1995–02 (AGARD Publication, 1995).

9. R. W. Noack and D. A. Anderson, Solution-adaptive grid generation using parabolic partial differential
equations, AIAA J. 28, 1016 (1990).

10. S. E. Rogers and D. Kwak, Upwind differencing scheme for the time-accurate incompressible Navier–Stokes
equations, AIAA J. 28, 253 (1990).

11. J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer
(Taylor & Francis, London, 1997).

12. H. Thornburg, B. K. Soni, and K. Boyalakuntlal, A structured grid based solution-adaptive technique for
complex separated flows, Appl. Math. Comput. 89, 259 (1998).

13. J. C. Yang and B. Soni, Structured adaptive grid generation, Appl. Math. Comput. 65, 265 (1994).

	1. INTRODUCTION
	FIG. 1.

	2. FINITE DIFFERENCING
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	3. NAVIER–STOKES SOLUTION
	4. EXAMPLES
	FIG. 6.
	FIG. 7.
	FIG. 7—Continued
	FIG. 8.
	FIG. 9.

	5. DISCUSSION
	FIG. 10.

	ACKNOWLEDGMENTS
	REFERENCES

